This section of the FEDERAL REGISTER contains notices to the public of the proposed

**Proposed Rules** 

issuance of rules and regulations. The purpose of these notices is to give interested persons an opportunity to participate in the rule making prior to the adoption of the final rules.

# DEPARTMENT OF TRANSPORTATION

### Federal Aviation Administration

### 14 CFR Part 25

[Docket No. FAA-2020-0720; Notice No. 25-20-08-SC]

# Special Conditions: The Boeing Company Model 787 Series Airplane; Seats With Pretensioner Restraint Systems

**AGENCY:** Federal Aviation Administration (FAA), DOT. **ACTION:** Notice of proposed special conditions.

**SUMMARY:** This action proposes special conditions for The Boeing Company (Boeing) Model 787 series airplane. This airplane will have a novel or unusual design feature when compared to the state of technology envisioned in the airworthiness standards for transport category airplanes. This design feature is pretensioner restraint systems installed on passenger seats. The applicable airworthiness regulations do not contain adequate or appropriate safety standards for this design feature. These proposed special conditions contain the additional safety standards that the Administrator considers necessary to establish a level of safety equivalent to that established by the existing airworthiness standards.

**DATES:** Send comments on or before December 4, 2020.

**ADDRESSES:** Send comments identified by Docket No. FAA–2020–0720 using any of the following methods:

• Federal eRegulations Portal: Go to http://www.regulations.gov/ and follow the online instructions for sending your comments electronically.

• *Mail:* Send comments to Docket Operations, M–30, U.S. Department of Transportation (DOT), 1200 New Jersey Avenue SE, Room W12–140, West Building Ground Floor, Washington, DC, 20590–0001.

• *Hand Delivery or Courier:* Take comments to Docket Operations in

Room W12–140 of the West Building Ground Floor at 1200 New Jersey Avenue SE, Washington, DC, between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays.

• *Fax:* Fax comments to Docket Operations at 202–493–2251.

*Privacy:* The FAA will post all comments it receives, without change, to *http://www.regulations.gov/*, including any personal information the commenter provides. Using the search function of the docket website, anyone can find and read the electronic form of all comments received into any FAA docket, including the name of the individual sending the comment (or signing the comment for an association, business, labor union, etc.). DOT's complete Privacy Act Statement can be found in the **Federal Register** published on April 11, 2000 (65 FR 19477–19478).

Docket: Background documents or comments received may be read at http://www.regulations.gov/ at any time. Follow the online instructions for accessing the docket or go to Docket Operations in Room W12–140 of the West Building Ground Floor at 1200 New Jersey Avenue SE, Washington, DC, between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays.

FOR FURTHER INFORMATION CONTACT: Shannon Lennon, Airframe and Cabin Safety Section, AIR–675, Transport Standards Branch, Policy and Innovation Division, Aircraft Certification Service, Federal Aviation Administration, 2200 South 216th Street, Des Moines, Washington 98198; telephone and fax 206–231–3209; email shannon.lennon@faa.gov.

# SUPPLEMENTARY INFORMATION:

### **Comments Invited**

The FAA invites interested people to take part in this rulemaking by sending written comments, data, or views. The most helpful comments reference a specific portion of the special conditions, explain the reason for any recommended change, and include supporting data.

The FAA will consider all comments received by the closing date for comments. The FAA may change these special conditions based on the comments received.

#### Background

On November 8, 2018, Boeing applied for a change to Type Certificate No.

Federal Register Vol. 85, No. 211 Friday, October 30, 2020

T00021SE for pretensioner restraint systems installed on passenger seats in the Model 787 series airplane. This airplane is a twin-engine, transportcategory airplane with passenger seating capacity of 420 and a maximum takeoff weight of 557,000 pounds.

### **Type Certification Basis**

Under the provisions of title 14, Code of Federal Regulations (14 CFR) 21.101, Boeing must show that the Model 787 series airplane, as changed, continues to meet the applicable provisions of the regulations listed in Type Certificate No. T00021SE or the applicable regulations in effect on the date of application for the change, except for earlier amendments as agreed upon by the FAA.

If the Administrator finds that the applicable airworthiness regulations (*e.g.*, 14 CFR part 25) do not contain adequate or appropriate safety standards for Boeing Model 787 series airplane because of a novel or unusual design feature, special conditions are prescribed under the provisions of § 21.16.

Special conditions are initially applicable to the model for which they are issued. Should the type certificate for that model be amended later to include any other model that incorporates the same novel or unusual design feature, or should any other model already included on the same type certificate be modified to incorporate the same novel or unusual design feature, these special conditions would also apply to the other model under § 21.101.

In addition to the applicable airworthiness regulations and special conditions, the Boeing Model 787 series airplane must comply with the fuel-vent and exhaust-emission requirements of 14 CFR part 34, and the noise certification requirements of 14 CFR part 36.

The FAA issues special conditions, as defined in 14 CFR 11.19, in accordance with § 11.38, and they become part of the type certification basis under § 21.101.

### **Novel or Unusual Design Features**

The Boeing Model 787 series airplane will incorporate the following novel or unusual design features:

Forward-facing seats incorporating a shoulder harness with pretensioner device, otherwise known as a

pretensioner restraint system, which is intended to protect the occupants from head injuries.

### Discussion

Boeing will install, in the Model 787 series airplane, forward-facing seats that incorporate a shoulder harness with a pretensioner system at each seat place for head-injury protection.

Shoulder harnesses have been widely used on flight-attendant seats, flightdeck seats, in business jets, and in general-aviation airplanes to reduce occupant head injury in the event of an emergency landing. Special conditions, pertinent regulations, and published guidance exist that relate to other restraint systems. However, the use of pretensioners in the restraint system on transport-airplane seats is a novel design.

The pretensioner restraint system utilizes a retractor which eliminates slack in the shoulder harness and pulls the occupant back into the seat prior to impact. This has the effect of reducing forward translation of the occupant, reducing head arc, and reducing the loads in the shoulder harness.

Pretensioner technology involves a step-change in loading experienced by the occupant for impacts below and above that at which the device deploys, because activation of the shoulder harness, at the point at which the pretensioner engages, interrupts uppertorso excursion. This could result in the head injury criteria (HIC) being higher at an intermediate impact condition than that resulting from the maximum impact condition corresponding to the test conditions specified in § 25.562. See condition 1 in these special conditions.

The ideal triangular maximumseverity pulse is defined in Advisory Circular (AC) 25.562–1B, "Dynamic **Evaluation of Seat Restraint Systems** and Occupant Protection on Transport Airplanes." For the evaluation and testing of less-severe pulses for purposes of assessing the effectiveness of the pretensioner setting, a similar triangular pulse should be used with acceleration, rise time, and velocity change scaled accordingly. The magnitude of the required pulse should not deviate below the ideal pulse by more than 0.5g until 1.33 t1 is reached, where t1 represents the time interval between 0 and t1 on the referenced pulse shape as shown in AC 25.562–1B. This is an acceptable method of compliance to the test requirements of the special conditions.

Additionally, the pretensioner might not provide protection, after actuation, during secondary impacts. Therefore, the case where a small impact is followed by a large impact should be addressed. If the minimum deceleration severity at which the pretensioner is set to deploy is unnecessarily low, the protection offered by the pretensioner may be lost by the time a second, larger impact occurs.

Conditions 1 through 4 ensure that the pretensioner system activates when intended, to provide the necessary protection of occupants. This includes protection of a range of occupants under various accident conditions. Conditions 5 through 10 address maintenance and reliability of the pretensioner system, including any outside influences on the mechanism, to ensure it functions as intended.

The proposed special conditions contain the additional safety standards that the Administrator considers necessary to establish a level of safety equivalent to that established by the existing airworthiness standards.

### Applicability

As discussed above, these special conditions are applicable to the Boeing Model 787 series airplane. Should Boeing apply at a later date for a change to the type certificate to include another model incorporating the same novel or unusual design feature, these special conditions would apply to that model as well.

# Conclusion

This action affects only a certain novel or unusual design feature on one model series of airplanes. It is not a rule of general applicability.

### List of Subjects in 14 CFR Part 25

Aircraft, Aviation safety, Reporting and recordkeeping requirements.

### **Authority Citation**

The authority citation for these special conditions is as follows:

**Authority:** 49 U.S.C. 106(f), 106(g), 40113, 44701, 44702, 44704.

### **The Proposed Special Conditions**

# §25.562 Emergency landing dynamic conditions.

Accordingly, the Federal Aviation Administration (FAA) proposes the following special conditions as part of the type certification basis for the Boeing Model 787 series airplane.

In addition to the requirements of § 25.562, forward-facing passenger seats with pretensioner restraint systems must meet the following:

# 1. Head Injury Criteria (HIC)

The HIC value must not exceed 1000 at any condition at which the pretensioner does or does not deploy, up to the maximum severity pulse that corresponds to the test conditions specified in § 25.562. Tests must be performed to demonstrate this, taking into account any necessary tolerances for deployment.

When an airbag device is present in addition to the pretensioner restraint system, and the anthropormorphic test device (ATD) has no apparent contact with the seat/structure but has contact with an airbag, a HIC unlimited scored in excess of 1000 is acceptable, provided the HIC15 score (calculated in accordance with 49 CFR 571.208) for that contact is less than 700.

ATD head contact with the seat or other structure, through the airbag, or contact subsequent to contact with the airbag, requires a HIC value that does not exceed 1000.

### 2. Protection During Secondary Impacts

The pretensioner activation setting must be demonstrated to maximize the probability of the protection being available when needed, considering secondary impacts.

# 3. Protection of Occupants Other Than 50th Percentile

Protection of occupants for a range of stature from a 2-year-old child to a 95th percentile male must be shown. For shoulder harnesses that include pretensioners, protection of occupants other than a 50th percentile male may be shown by test or analysis. In addition, the pretensioner must not introduce a hazard to passengers due to the following seating configurations:

a. The seat occupant is holding an infant.

b. The seat occupant is a child in a child-restraint device.

c. The seat occupant is a pregnant woman.

# 4. Occupants Adopting the Brace Position

Occupants in the traditional brace position when the pretensioner activates must not experience adverse effects from the pretensioner activation.

# 5. Inadvertent Pretensioner Actuation

a. The probability of inadvertent pretensioner actuation must be shown to be extremely remote (*i.e.*, average probability per flight hour of less than  $10^{-7}$ ).

b. The system must be shown to be not susceptible to inadvertent pretensioner actuation as a result of wear and tear, nor inertia loads resulting from in-flight or ground maneuvers likely to be experienced in service.

c. The seated occupant must not be seriously injured as a result of inadvertent pretensioner actuation. d. Inadvertent pretensioner actuation must not cause a hazard to the airplane, nor cause serious injury to anyone who may be positioned close to the retractor or belt (*e.g.*, seated in an adjacent seat or standing adjacent to the seat).

# 6. Availability of the Pretensioner Function Prior To Flight

The design must provide means for a crewmember to verify the availability of the pretensioner function prior to each flight, or the probability of failure of the pretensioner function must be demonstrated to be extremely remote (*i.e.*, average probability per flight hour of less than  $10^{-7}$ ) between inspection intervals.

### 7. Incorrect Seat Belt Orientation

The system design must ensure that any incorrect orientation (twisting) of the seat belt does not compromise the pretensioner protection function.

### 8. Contamination Protection

The pretensioner mechanisms and controls must be protected from external contamination associated with that which could occur on or around passenger seating.

### 9. Prevention of Hazards

The pretensioner system must not induce a hazard to passengers in case of fire, nor create a fire hazard, if activated.

### 10. Functionality After Loss of Power

The system must function properly after loss of normal airplane electrical power, and after a transverse separation in the fuselage at the most critical location. A separation at the location of the system does not have to be considered.

Issued in Des Moines, Washington, on October 14, 2020.

# James E. Wilborn,

Acting Manager, Transport Standards Branch, Policy and Innovation Division, Aircraft Certification Service.

[FR Doc. 2020–23153 Filed 10–29–20; 8:45 am]

BILLING CODE 4910-13-P

# CONSUMER PRODUCT SAFETY COMMISSION

[Docket No. CPSC-2020-0024]

# 16 CFR Part 1632

# Standard for the Flammability of Mattresses and Mattress Pads; Proposed Amendment

AGENCY: Consumer Product Safety Commission.

ACTION: Proposed rule.

**SUMMARY:** The Consumer Product Safety Commission (Commission, or CPSC) is proposing to amend its Standard for the Flammability of Mattresses and Mattress Pads. The ignition source cigarette specified in the standard for use in the mattress standard's performance tests, Standard Reference Material cigarette SRM 1196, is no longer available for purchase. The Commission is proposing to amend the mattress standard to require a revised Standard Reference Material cigarette, SRM 1196a, which was developed by the National Institute of Standards and Technology, as the ignition source for testing to the mattress standard.

**DATES:** Comments on the proposal should be submitted no later than January 13, 2021.

**ADDRESSES:** Comments, identified by Docket No. CPSC–2020–0024, may be submitted electronically or in writing:

*Electronic Submissions:* Submit electronic comments to the Federal eRulemaking Portal at: *https:// www.regulations.gov.* Follow the instructions for submitting comments. The CPSC does not accept comments submitted by electronic mail (email), except through *https:// www.regulations.gov.* The CPSC encourages you to submit electronic comments by using the Federal eRulemaking Portal, as described above.

Mail/hand delivery/courier Written Submissions: Submit comments by mail/hand delivery/courier to: Division of the Secretariat, Consumer Product Safety Commission, Room 820, 4330 East-West Highway, Bethesda, MD 20814; telephone: (301) 504–7479; email: amills@cpsc.gov.

Instructions: All submissions must include the agency name and docket number for this proposed rule. CPSC may post all comments received without change, including any personal identifiers, contact information, or other personal information provided, to: https://www.regulations.gov. Do not submit electronically: confidential business information, trade secret information, or other sensitive or protected information that you do not want to be available to the public. If you wish to submit such information, please submit it according to the instructions for written submissions.

*Docket:* For access to the docket to read background documents or comments received, go to: *https:// www.regulations.gov,* and insert the docket number, CPSC–2020–0024, into the "Search" box, and follow the prompts.

FOR FURTHER INFORMATION CONTACT: Lisa Scott, Directorate for Laboratory

Sciences, Office of Hazard Identification and Reduction, U.S. Consumer Product Safety Commission, 5 Research Place, Rockville, MD 20850; telephone: 301– 987–2064; email: *lscott@cpsc.gov.* 

# SUPPLEMENTARY INFORMATION:

# A. Background

# 1. The Standard

The Standard for the Flammability of Mattresses and Mattress Pads (Standard), 16 CFR part 1632, issued pursuant to the Flammable Fabrics Act (FFA), 15 U.S.C. 1191 *et seq.*, sets forth a test to determine the ignition resistance of a mattress or mattress pad when exposed to a lighted cigarette. Lighted cigarettes are placed at specified locations on the surface of a mattress or mattress pad. The Standard establishes pass/fail criteria for the tests. The Standard currently specifies the ignition source for these tests as Standard Reference Material cigarette SRM 1196, available for purchase from the National Institute of Standards and Technology (NIST). See 16 CFR 1632.4(a)(2).

### 2. Development of the Original Standard Reference Material Cigarette

The original specification for the Standard's ignition source included physical characteristics of a conventional, commercially available, non-filtered, king-sized cigarette. Although no specific brand was identified in the standard, a Pall Mall Red cigarette, manufactured by R.J. Reynolds Tobacco Company (RJR), was commonly known to meet the specifications. In early 2008, RJR notified CPSC that the company intended to convert its production of Pall Mall Red cigarettes to be Fire Standard Compliant (FSC).

In 2008, CPSC sought to find an alternate ignition source and contracted with NIST to develop an ignition source with an ignition strength equivalent to the conventional Pall Mall Red cigarette. The ignition strength value is on a scale from 0 to 100 and is analogous to the percentage of full-length burns on a laboratory substrate. Lower values indicate a cigarette is more likely to selfextinguish when not actively being smoked, while higher values indicate a cigarette is more likely to remain lit while unattended. The Pall Mall Red ignition strength varied by vintage from a measured low of 35 to a high of 95, most often falling at the higher end of the range. FSC cigarettes are required to have an ignition strength lower than 25 and in practice are often much weaker to ensure uniform compliance.

In 2010, NIST developed SRM 1196, Standard Cigarette for Ignition