ENVIRONMENTAL PROTECTION AGENCY

40 CFR Part 141

Expedited Approval of Alternative Test Procedures for the Analysis of Contaminants Under the Safe Drinking Water Act; Analysis and Sampling Procedures

AGENCY: Environmental Protection Agency (EPA).

ACTION: Final rule.

SUMMARY: This action announces the U.S. Environmental Protection Agency’s (EPA’s) approval of alternative testing methods for use in measuring the levels of contaminants in drinking water and determining compliance with national primary drinking water regulations. The Safe Drinking Water Act authorizes EPA to approve the use of alternative testing methods through publication in the Federal Register. EPA is using this streamlined authority to make 16 additional methods available for analyzing drinking water samples. This expedited approach provides public water systems, laboratories, and primacy agencies with more timely access to new measurement techniques and greater flexibility in the selection of analytical methods, thereby reducing monitoring costs while maintaining public health protection.

DATES: This action is effective July 19, 2016.

ADDRESSES: The EPA has established a docket for this action under Docket ID No. EPA–HQ–2016–0281. All documents in the docket are listed on the http://www.regulations.gov Web site. Although listed in the index, some information is not publicly available, e.g., CBI or other information whose disclosure is restricted by statute. Certain other material, such as copyrighted material, is not placed on the Internet and will be publicly available only in hard copy form. Publicly available docket materials are available electronically through http://www.regulations.gov.

FOR FURTHER INFORMATION CONTACT: The Safe Drinking Water Hotline (800) 426–4791 or Glynda Smith, Technical Support Center, Standards and Risk Management Division, Office of Ground Water and Drinking Water (MS 140), Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268; telephone number: (513) 569–7652; email address: smith.glynda@epa.gov.

SUPPLEMENTARY INFORMATION:

This table is not intended to be exhaustive, but rather provides a guide for readers regarding entities likely to be affected by this action. This table lists the types of entities that EPA is now aware could potentially be affected by this action. Other types of entities not listed in the table could also be impacted. To determine whether your facility is affected by this action, you should carefully examine the applicability language in the Code of Federal Regulations (CFR) at 40 CFR 141.2 (definition of public water system). If you have questions regarding the applicability of this action to a particular entity, consult the person listed in the preceding FOR FURTHER INFORMATION CONTACT section.

<table>
<thead>
<tr>
<th>Category</th>
<th>Examples of potentially regulated entities</th>
<th>NAICS¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>State, local, & tribal governments.</td>
<td>State, local and tribal governments that analyze water samples on behalf of public water systems required to conduct such analysis; state, local and tribal governments that directly operate community and non-transient non-community water systems required to monitor.</td>
<td>924110</td>
</tr>
<tr>
<td>Industry</td>
<td>Private operators of community and non-transient non-community water systems required to monitor.</td>
<td></td>
</tr>
<tr>
<td>Municipalities</td>
<td>Municipal operators of community and non-transient non-community water systems required to monitor.</td>
<td>221310</td>
</tr>
</tbody>
</table>

¹North American Industry Classification System.

Abbreviations and Acronyms Used in This Action

APHA: American Public Health Association
ATP: Alternate Test Procedure
CFR: Code of Federal Regulations
DPD: N,N-diethyl-p-phenylenediamine
EPA: United States Environmental Protection Agency
LED: Light Emitting Diode
NAICS: North American Industry Classification System
NEMI: National Environmental Methods Index
NTU: Nephelometric Turbidity Unit
QC: Quality Control
SDWA: The Safe Drinking Water Act
TOC: Total Organic Carbon
VCSB: Voluntary Consensus Standard Bodies

II. Background

A. What is the purpose of this action?

In this action, EPA is approving 16 analytical methods for determining contaminant concentrations in drinking water samples collected under SDWA. Regulated parties required to sample and monitor may use either the testing methods already established in existing regulations or the alternative testing methods being approved in this action or in prior expedited approval actions. The new methods are listed along with other methods similarly approved through previous expedited actions in 40 CFR part 141, appendix A to subpart C and on EPA’s drinking water methods Web site at https://www.epa.gov/dwanalyticalmethods.
B. What is the basis for this action?

When EPA determines that an alternative analytical method is “equally effective” (i.e., as effective as a method that has already been promulgated in the regulations), SDWA allows EPA to approve the use of the alternative method through publication in the Federal Register (see Section 1401(1) of SDWA). EPA is using this streamlined approval authority to make 16 additional methods available for determining contaminant concentrations in drinking water samples collected under SDWA. EPA has determined that, for each contaminant or group of contaminants listed in Section III, the additional testing methods being approved in this action are as effective as one or more of the testing methods already approved in the regulations for those contaminants. Section 1401(1) of SDWA states that the newly approved methods “shall be treated as an alternative for public water systems to the quality control and testing procedures listed in the regulation.” Accordingly, this action makes these additional 16 analytical methods legally available as options for meeting EPA’s monitoring requirements.

This action does not add regulatory language, but does, for informational purposes, update an appendix to the regulations at 40 CFR part 141 that lists all methods approved under Section 1401(1) of SDWA. Accordingly, while this action is not a rule, it is updating CFR text and therefore is being published in the “Final Rules” section of the Federal Register.

III. Summary of Approvals

EPA is approving 16 methods that are equally effective relative to methods previously promulgated in the regulations. By means of this rule, these 16 methods are added to appendix A to subpart C of 40 CFR part 141.

A. Methods developed by Voluntary Consensus Standard Bodies (VCSB)

ASTM International. EPA compared the most recent versions of seven ASTM International methods to the earlier versions of those methods that are currently approved in 40 CFR part 141. Changes between the earlier approved version and the most recent version of each method are summarized in Smith (2015). The revisions primarily involve editorial changes (e.g., updated references, definitions, terminology, procedural clarifications, and reorganization of text). The revised methods are the same as the approved versions with respect to sample collection and handling protocols, sample preparation, analytical methodology, and method performance data; thus, EPA finds they are equally effective relative to the approved methods. EPA is thus approving the use of the following ASTM methods for the contaminants and their respective regulations listed in the following table:

<table>
<thead>
<tr>
<th>ASTM revised version</th>
<th>Approved method</th>
<th>Contaminant</th>
<th>Regulation</th>
</tr>
</thead>
</table>

The ASTM methods are available from ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428–2959 or http://www.astm.org.

B. Methods Developed by Vendors

1. Hach Method 10241—
Spectrophotometric Measurement of Free Chlorine (Cl₂) in Finished Drinking Water (Hach Company 2015a). In Hach Method 10241, free chlorine is converted to monochloramine by addition of an ammonia solution to a drinking water sample. In the presence of a cyanoferrate catalyst, monochloramine reacts with a substituted phenol to form an intermediate monoamine compound. The intermediate monomine compound couples with excess substituted phenol to form a green indophenol compound.
Spectrophotometric measurement of absorbance at 655 nm (610 nm for colorimeters) is directly proportional to the concentration of free chlorine in the sample.

The currently approved methods for free chlorine in drinking water are listed in the tables at 40 CFR 141.74(a)(2) and 40 CFR 141.131(c)(1). One of the most widely used approved methods is Standard Method 4500-Cl G–00 (APHA 2000a), which uses a N,N-diethyl-p-phenylenediamine (DPD) indicator for spectrophotometric determination of residual chlorine concentrations in drinking water. The DPD methodology can be subject to interferences associated with the presence of manganese, chloramines, and other oxidants. Hach Method 10241 is not subject to such interferences.
A multi-laboratory study compared the performance characteristics of Hach Method 10241 to the performance characteristics of the approved Standard Method 4500-Cl G–00. A variety of samples, including drinking water samples from both surface water and ground water sources, were fortified with known chlorine concentrations and analyzed by both methods. The results are summarized in the validation study report (Hach Company 2015b).

EPA has determined that Hach Method 10241 is equally as effective as the approved Standard Method 4500-Cl G–00. The basis for this determination is discussed in Adams and Smith (2016). Therefore, EPA is approving Hach Method 10241 for determining free chlorine concentrations in drinking water. Hach Method 10241 can be obtained from Hach Company, 5600 Lindbergh Drive, Loveland, Colorado 80539. (http://www.hach.com).

2. Hach Method 8026—
Spectrophotometric Measurement of Copper in Finished Drinking Water (Hach Company 2015c). In Hach Method 8026, cuprous copper is measured colorimetrically by complexation with bichinchoninic acid. The intensity in color is proportional to the copper concentration, and spectrophotometer measurements are taken at 560 nm. Cupric copper present in samples is chemically reduced to cuprous copper. Metal and hardness interferences in samples are mitigated through the use of a chelating agent. The method is performed by the addition of...
powder pillows containing reagents to the water samples.

The currently approved methods for the analysis of copper in drinking water are listed in the table at 40 CFR 141.23(k)(1). The approved methods are based on atomic spectroscopy technologies. Hach Method 8026 employs a spectrophotometer, and is based on known complexation principles and simple color/absorbance measurements to determine copper concentrations.

A multi-laboratory validation study was conducted to compare the performance of Hach Method 8026 to EPA Method 200.7 (USEPA 1994), one of the approved methods for the analysis of copper in drinking water. Multiple finished drinking water samples drawn from both ground water and surface water sources were used in the validation study. Precision, accuracy and sensitivity data were collected by analyzing drinking water samples fortified with varying concentrations of copper standards. The results are summarized in the validation study report (Hach Company 2015d). EPA has determined that Hach Method 8026 is equally as effective as the approved EPA Method 200.7. The basis for this determination is discussed in Adams and Smith (2016). Therefore, EPA is approving Hach Method 8026 for the analysis of copper in drinking water. Hach Method 8026 can be obtained from Hach Company, 5600 Lindbergh Drive, Loveland, Colorado 80539. (http://www.hach.com).

3. Hach Method 10261—Total Organic Carbon in Finished Drinking Water by Catalyzed Ozone Hydroxyl Radical Oxidation Infrared Analysis (Hach Company 2015e). Hach Method 10261 is a method for the determination of total organic carbon (TOC) in drinking water using an advanced oxidation process and non-dispersive infrared spectroscopy. In this method, ozone and a base are added to water to produce hydroxyl radicals. The hydroxyl radicals oxidize organic carbon to produce carbon dioxide and sodium oxalate. The sodium oxalate is further oxidized to carbon dioxide using acidification and a manganese catalyst. The carbon dioxide produced by both oxidation processes is then measured using non-dispersive infrared spectroscopy. The currently approved methods for the analysis of TOC in drinking water are listed in 40 CFR 141.23(k)(1). The approved methods are based on atomic spectroscopy technologies, Hach Method 5310 C–00 (APHA 2000b), may not be used to determine certain organic compounds. Hach Method 10261 uses a more efficient advanced oxidation process to ensure more complete oxidation. A multi-laboratory validation study was conducted to compare the performance of Hach Method 10261 to the approved Standard Method 5310 C–00. Multiple finished drinking water samples drawn from both ground water and surface water sources were used in the validation study. Precision, accuracy and sensitivity data were collected by analyzing drinking water samples fortified with varying concentrations of TOC. The results are summarized in the validation study report (Hach Company 2015f). EPA has determined that Hach Method 10261 is equally as effective as the approved Standard Method 5310 C–00. The basis for this determination is discussed in Adams and Smith (2016).

Therefore, EPA is approving Hach Method 10267 for the analysis of TOC in drinking water. Hach Method 10267 can be obtained from Hach Company, 5600 Lindbergh Drive, Loveland, Colorado 80539. (http://www.hach.com).

5. Hach Method 10272—Spectrophotometric Measurement of Copper in Finished Drinking Water (Hach Company 2015i). In Hach Method 10272, cuprous copper is measured colorimetrically by complexation with bicinchoninic acid. The intensity in color is proportional to the copper concentration, and spectrophotometer measurements are taken at 560 nm. Cupric copper present in samples is chemically reduced to cuprous copper. Metal and hardness interferences in samples are mitigated through the use of a chelating agent. The method is performed through the use of a copper Chemkey and portable analyzer.

The current approved methods for the analysis of copper in drinking water are listed in the table at 40 CFR 141.23(k)(1). The approved methods are based on atomic spectroscopy technologies. Hach Method 10272 uses a spectrophotometer, simple color/absorbance measurements to determine copper concentrations, and incorporates portability and streamlining into the analysis. A multi-laboratory validation study was conducted to determine the performance of Hach Method 10272 compared to the approved Standard Method 10272 (USEPA 1994), one of the approved methods for the analysis of copper in drinking water. Multiple finished drinking water samples drawn from both ground water and surface water sources were used in the validation study. Precision, accuracy and sensitivity data were collected by analyzing drinking water samples fortified with varying concentrations of copper standards. The results are summarized in the validation study report (Hach Company 2015j). EPA has determined that Hach Method 10272 is equally as effective as the approved EPA Method 200.7. The basis for this determination is discussed in Adams and Smith (2016). Therefore, EPA is approving Hach Method 10272 for the analysis of copper in drinking water. Hach Method 10272 can be obtained from Hach Company, 5600 Lindbergh Drive, Loveland, Colorado 80539. (http://www.hach.com).

In this method, a non-incandescent light source operates at a wavelength of 660 + 30 nm and light scattered by the sample is collected and detected at an angle 90 degrees to the incident light, 360 degrees around the sample vial. This design offers improved sensitivity (minimum quantitation limit of 0.0005 Nephelometric Turbidity Units (NTU) and resolution (0.0001 NTU) relative to the approved methods.

The currently approved methods for the analysis of turbidity in treated drinking water are listed in the regulations at 40 CFR 141.74(a)(1). A multi-facility validation study was conducted to compare the performance of Hach Method 10258 to the approved Hach FilterTrak Method 10133 (Hach Company 2000) for the analysis of turbidity in treated drinking water. Seven public drinking water facilities participated in the study. Three facilities produced treated water using both conventional-filtration and membrane-filtration, two facilities produced only conventional-filtration treated water, and two facilities produced only membrane-filtration treated water. Source waters encompassed both surface waters and ground waters under the direct influence of surface water. Turbidity comparison data were collected at each facility by operating the instrument collecting the Hach Method 10258 turbidity data in parallel with an instrument collecting turbidity data using the approved Hach FilterTrack Method 10133. Precision and accuracy (based on recovery of matrix spike injections) data were collected over a range of spike levels (0.0015–0.500 NTU) and calibration verification data were collected from each facility. The results are summarized in the validation study report (Hach Company 2014). EPA has determined that Hach Method 10258 is equally as effective as the approved Hach FilterTrak Method 10133. The basis for this determination is discussed in Adams and Smith (2016). Therefore, EPA is approving Hach Method 10258 for the analysis of turbidity in drinking water. Hach Method 10258 can be obtained from Hach Company, 5600 Lindbergh Drive, Loveland, Colorado 80539.

Nitrate-Nitrogen Analysis of Drinking Water (NECi 2016a). The NECi nitrate reductase method is used for the determination of nitrate plus nitrite (as nitrogen) in drinking water. In this method, a eukaryotic nitrate reductase is used to catalyze the conversion of nitrate to nitrite in the presence of nitrocinamide adenine dinucleotide as a reductant in a buffer with a near neutral pH. The combined nitrite (both the original and reduced nitrate) is reacted with sulfanilamide and N-(1-naphthyl) ethylenediamine dihydrochloride to produce a chromophore. The combined nitrite concentration is then measured spectrophotometrically at ~540 nm. The method entails the use of a discrete analyzer that incorporates a spectrophotometric detector.

The currently approved methods for the analysis of nitrate and nitrite in drinking water are listed in 40 CFR 141.23(k)(1). The approved EPA Method 353.2 (USEPA 1993a) uses cadmium to reduce nitrate to nitrite and subsequently measures the combined nitrite colorimetrically. The NECi nitrate reductase method provides an environmentally friendly approach to nitrate-nitrogen analysis by eliminating the use of toxic cadmium and requires only a fraction of the sample volume used in the approved EPA method.

A validation study was conducted to compare the performance of the NECi nitrate reductase method to the approved EPA Method 353.2. Multiple finished drinking water samples drawn from both ground water and surface water sources were used in the validation study. Precision, accuracy and sensitivity data were collected by analyzing drinking water samples fortified with varying concentrations of nitrate standards. The results are summarized in the validation study report (NECi 2016b). EPA has determined that the Thermo Fisher discrete analyzer method for orthophosphate is equally as effective as the approved Standard Method 4500–P-E. Therefore, EPA is approving the Thermo Fisher method for the analysis of orthophosphate in treated drinking water. The basis for this determination is discussed in Adams (2016). The Thermo Fisher discrete analyzer method for orthophosphate can be obtained from Thermo Fisher Scientific, Rataste 2, 01620 Vantaa, Finland.

9. Mitchell Method M5331, Revision 1.2—Determination of Turbidity by LED or Laser Nephelometry (Mitchell 2016). Mitchell Method M5331, Revision 1.1 (Mitchell 2009) was approved for the determination of turbidity in drinking water by light emitting diode (LED) nephelometry in the August 2009 expedited methods approval action (USEPA 2009). The currently approved methods for turbidity are listed in 40 CFR 141.74(a)(1) and different sources, including lasers, have been approved. The Mitchell Method M5331 has been updated to incorporate the option of using a solid-state laser in place of a LED as the light source for the turbidimeter. The vendor cites multiple advantages associated with the use of lasers relative to LEDs (Mitchell 2015). Mitchell Method M5331, Revision 1.1 specifies a light source at 532 ± 15 nm, and now lasers at 520 nm and 532 nm are readily available. In addition to
meeting the specified wavelength range, solid-state lasers can offer longer source lifetimes, greater stability, and improved stray light rejection. The updated method is the same as the approved Mitchell Method M5331, Revision 1.1 relative to the divergence of the light source measurement area, the detector, and all other instrumental features. EPA has determined that the updated method is equally as effective as the promulgated EPA Method 180.1 (USEPA 1993b), which established the criteria for nephelometric determination of turbidity. The basis for this determination is discussed in Wendelken and Smith (2016). Therefore, EPA is approving Mitchell Method M5331, Revision 1.2 for the determination of turbidity in drinking water. Mitchell Method M5331, Revision 1.2 can be obtained from Leck Mitchell, Ph.D., P.E., 656 Independence Valley Drive, Grand Junction, Colorado 81507.

IV. Statutory and Executive Order Reviews

As noted in Section II, under the terms of SDWA Section 1401(1), this streamlined method approval action is not a rule. Accordingly, the Congressional Review Act, 5 U.S.C. 801 et seq., as added by the Small Business Regulatory Enforcement Fairness Act of 1996, does not apply because this action is not a rule for purposes of 5 U.S.C. 804(3). Similarly, this action is not subject to the Regulatory Flexibility Act because it is not subject to notice and comment requirements under the Administrative Procedure Act or any other statute. In addition, because this approval action is not a rule but simply makes alternative testing methods available as options for monitoring under SDWA, EPA has concluded that other statutes and executive orders generally applicable to rulemaking do not apply to this approval action.

V. References

Part 141—National Primary Drinking Water Regulations

1. The authority citation for part 141 continues to read as follows:

Authority: 42 U.S.C. 300f, 300g–1, 300g–2, 300g–3, 300g–4, 300g–5, 300g–6, 300j–4, 300j–9, and 300–11.

2. Appendix A to subpart c of part 141 is amended as follows:

b. By revising the entry for “Turbidity” in the table entitled “Alternative Testing Methods for Contaminants Listed at 40 CFR 141.74(a)(1).”

c. By revising entries for “Free Chlorine” and “Total Chlorine” in the table entitled “Alternative Testing Methods for Disinfectant Residuals Listed at 40 CFR 141.74(a)(2).”

d. By revising the entries for “Free Chlorine,” “Combined Chlorine,” and “Total Chlorine” in the table entitled “Alternative Testing Methods for Disinfectant Residuals Listed at 40 CFR 141.131(c)(1).”

e. By revising the entire table entitled “Alternative Testing Methods for Parameters Listed at 40 CFR 141.131(d).”

f. By revising footnotes 2, 9, 14, 16, 18, 19, 24–27, 29, and 33.

g. By adding footnotes 34–42 to the table.

The revisions and additions read as follows:

Appendix A to Subpart C of Part 141—Alternative Testing Methods Approved for Analyses Under the Safe Drinking Water Act

A ^ Alternative Testing Methods for Contaminants Listed at 40 CFR 141.23(k)(1)

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Methodology</th>
<th>EPA method</th>
<th>SM 21st Edition</th>
<th>SM 22nd Edition</th>
<th>SM Online</th>
<th>ASTM</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony</td>
<td>Hydride–Atomic Absorption</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>D 3697–07, 12.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atomic Absorption; Furnace</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For the reasons stated in the preamble, 40 CFR part 141 is amended as follows:

ALTERNATIVE TESTING METHODS FOR CONTAMINANTS LISTED AT 40 CFR 141.23(k)(1)—Continued

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Methodology</th>
<th>EPA method</th>
<th>SM 21st Edition</th>
<th>SM 22nd Edition</th>
<th>SM Online</th>
<th>ASTM</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
<td>EDTA Titrimetric</td>
<td>3500–Ca B</td>
<td>3500–Ca B</td>
<td>3113 B</td>
<td>D 1688–07</td>
<td>12 C</td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>Atomic Absorption; Direct Aspiration.</td>
<td>3111 B</td>
<td>3111 B</td>
<td>3113 B–04, B–10</td>
<td>D 6919–09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>Inductively Coupled Plasma.</td>
<td>3120 B</td>
<td>3120 B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>Axially viewed inductively coupled plasma-atomic emission spectrometry (AVICP–AES).</td>
<td>200.5, Revision 4.2.2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>Atomic Absorption; Furnace.</td>
<td>3111 B</td>
<td>3111 B</td>
<td>3113 B–04, B–10</td>
<td>D 6919–09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>Atomic Absorption; Direct Aspiration.</td>
<td>3111 B</td>
<td>3111 B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>Inductively Coupled Plasma.</td>
<td>3120 B</td>
<td>3120 B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>Axially viewed inductively coupled plasma-atomic emission spectrometry (AVICP–AES).</td>
<td>200.5, Revision 4.2.2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conductivity</td>
<td>Conductance</td>
<td>2510 B</td>
<td>2510 B</td>
<td></td>
<td>D 1125–14 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>Atomic Absorption</td>
<td>3111 B</td>
<td>3111 B</td>
<td></td>
<td>D 6919–09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>Inductively Coupled Plasma.</td>
<td>3120 B</td>
<td>3120 B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>Complexation Titrimetric Methods.</td>
<td>3500–Mg B</td>
<td>3500–Mg B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate</td>
<td>Ion Chromatography; Automated Cadmium Reduction.</td>
<td>4110 B</td>
<td>4110 B</td>
<td></td>
<td>D 4327–11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate</td>
<td>Manual Cadmium Reduction.</td>
<td>4500–NO₂</td>
<td>4500–NO₂</td>
<td>F.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate</td>
<td>Ion Selective Electrode Reduction/Colorimetric</td>
<td>4500–NO₂</td>
<td>4500–NO₂</td>
<td>F.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate</td>
<td>Reduction/Colorimetric</td>
<td>4500–NO₂</td>
<td>4500–NO₂</td>
<td>D.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrite</td>
<td>Ion Chromatography; Automated Cadmium Reduction.</td>
<td>4110 B</td>
<td>4110 B</td>
<td></td>
<td>D 4327–11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrite</td>
<td>Manual Cadmium Reduction.</td>
<td>4500–NO₂</td>
<td>4500–NO₂</td>
<td>F.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrite</td>
<td>Spectrophotometric</td>
<td>4500–NO₂</td>
<td>4500–NO₂</td>
<td>E.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrite</td>
<td>Reduction/Colorimetric</td>
<td>4500–NO₂</td>
<td>4500–NO₂</td>
<td>B.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orthophosphate</td>
<td>Ion Chromatography; Ascorbic acid, single reagent.</td>
<td>4500–P E</td>
<td>4500–P E</td>
<td>4500–P E–99</td>
<td>D 4327–11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* * * * *
ALTERNATIVE TESTING METHODS FOR CONTAMINANTS LISTED AT 40 CFR 141.74(a)(1)

<table>
<thead>
<tr>
<th>Organism</th>
<th>Methodology</th>
<th>SM 21st Edition</th>
<th>SM 22nd Edition</th>
<th>SM Online</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity</td>
<td>Nephelometric Method</td>
<td>2130 B</td>
<td>2130 B</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laser Nephelometry (on-line)</td>
<td></td>
<td></td>
<td></td>
<td>Mitchell M5271,19</td>
</tr>
<tr>
<td></td>
<td>LED Nephelometry (on-line)</td>
<td></td>
<td></td>
<td></td>
<td>Mitchell M5331, Rev. 1.2,42</td>
</tr>
<tr>
<td></td>
<td>LED Nephelometry (portable)</td>
<td></td>
<td></td>
<td></td>
<td>AMI Turbiwell,15</td>
</tr>
<tr>
<td></td>
<td>360° Nephelometry</td>
<td></td>
<td></td>
<td></td>
<td>Orion AQ4500,12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hach Method 10258,39</td>
</tr>
</tbody>
</table>

ALTERNATIVE TESTING METHODS FOR DISINFECTANT RESIDUALS LISTED AT 40 CFR 141.74(a)(2)

<table>
<thead>
<tr>
<th>Residual</th>
<th>Methodology</th>
<th>SM 21st Edition</th>
<th>SM 22nd Edition</th>
<th>ASTM</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Chlorine</td>
<td>Amperometric Titration</td>
<td>4500–Cl D</td>
<td>4500–Cl D</td>
<td>D</td>
<td>1253–08, – 14</td>
</tr>
<tr>
<td></td>
<td>DPD Ferrous Titrimetric</td>
<td>4500–Cl F</td>
<td>4500–Cl F</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DPD Colorimetric</td>
<td>4500–Cl G</td>
<td>4500–Cl G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Syringaldazine (FACTS)</td>
<td>4500–Cl H</td>
<td>4500–Cl H</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>On-line Chlorine Analyzer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amperometric Sensor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indophenol Colorimetric</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Chlorine</td>
<td>Amperometric Titration (Low level measurement)</td>
<td>4500–Cl E</td>
<td>4500–Cl E</td>
<td></td>
<td>1253–08, – 14</td>
</tr>
<tr>
<td></td>
<td>DPD Ferrous Titrimetric</td>
<td>4500–Cl F</td>
<td>4500–Cl F</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DPD Colorimetric</td>
<td>4500–Cl G</td>
<td>4500–Cl G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iodometric Electrode</td>
<td>4500–Cl I</td>
<td>4500–Cl I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>On-line Chlorine Analyzer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amperometric Sensor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ALTERNATIVE TESTING METHODS FOR DISINFECTANT RESIDUALS LISTED AT 40 CFR 141.131(c)(1)

<table>
<thead>
<tr>
<th>Residual</th>
<th>Methodology</th>
<th>SM 21st Edition</th>
<th>SM 22nd Edition</th>
<th>ASTM</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Chlorine</td>
<td>Amperometric Titration</td>
<td>4500–Cl D</td>
<td>4500–Cl D</td>
<td>D</td>
<td>1253–08, – 14</td>
</tr>
<tr>
<td></td>
<td>DPD Ferrous Titrimetric</td>
<td>4500–Cl F</td>
<td>4500–Cl F</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DPD Colorimetric</td>
<td>4500–Cl G</td>
<td>4500–Cl G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Syringaldazine (FACTS)</td>
<td>4500–Cl H</td>
<td>4500–Cl H</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>On-line Chlorine Analyzer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amperometric Sensor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indophenol Colorimetric</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined Chlorine</td>
<td>Amperometric Titration</td>
<td>4500–Cl D</td>
<td>4500–Cl D</td>
<td>D</td>
<td>1253–08, – 14</td>
</tr>
<tr>
<td></td>
<td>DPD Ferrous Titrimetric</td>
<td>4500–Cl F</td>
<td>4500–Cl F</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DPD Colorimetric</td>
<td>4500–Cl G</td>
<td>4500–Cl G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iodometric Electrode</td>
<td>4500–Cl I</td>
<td>4500–Cl I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Chlorine</td>
<td>Amperometric Titration</td>
<td>4500–Cl D</td>
<td>4500–Cl D</td>
<td>D</td>
<td>1253–08, – 14</td>
</tr>
<tr>
<td></td>
<td>Low level Amperometric Titration</td>
<td>4500–Cl E</td>
<td>4500–Cl E</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DPD Ferrous Titrimetric</td>
<td>4500–Cl F</td>
<td>4500–Cl F</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DPD Colorimetric</td>
<td>4500–Cl G</td>
<td>4500–Cl G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iodometric Electrode</td>
<td>4500–Cl I</td>
<td>4500–Cl I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amperometric Sensor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>On-line Chlorine Analyzer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Methodology</td>
<td>SM 21st Edition</td>
<td>SM 22nd Edition</td>
<td>SM Online</td>
<td>EPA</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>----------</td>
<td>-----</td>
</tr>
<tr>
<td>Total Organic Carbon (TOC)</td>
<td>High Temperature Combustion</td>
<td>S310 B</td>
<td>S310 B</td>
<td>415.3, Rev 1.2<sup>19</sup></td>
<td>Hach Method 10267,<sup>26</sup></td>
</tr>
<tr>
<td></td>
<td>Persulfate-Ultraviolet or Heated Persulfate Oxidation.</td>
<td>S310 C</td>
<td>S310 C</td>
<td>415.3, Rev 1.2<sup>19</sup></td>
<td>Hach Method 10267,<sup>26</sup></td>
</tr>
<tr>
<td></td>
<td>Wet Oxidation</td>
<td>S310 D</td>
<td>S310 D</td>
<td>415.3, Rev 1.2<sup>19</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ozone Oxidation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific Ultraviolet Absorbance (SUVA)</td>
<td>Calculation using DOC and UV<sub>254</sub> data.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissolved Organic Carbon (DOC)</td>
<td>High Temperature Combustion</td>
<td>S310 B</td>
<td>S310 B</td>
<td>415.3, Rev 1.2<sup>19</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Persulfate-Ultraviolet or Heated Persulfate Oxidation.</td>
<td>S310 C</td>
<td>S310 C</td>
<td>415.3, Rev 1.2<sup>19</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wet Oxidation</td>
<td>S310 D</td>
<td>S310 D</td>
<td>415.3, Rev 1.2<sup>19</sup></td>
<td></td>
</tr>
<tr>
<td>Ultraviolet absorption at 254 nm (UV<sub>254</sub>)</td>
<td>Spectrophotometry</td>
<td>S910 B</td>
<td>S910 B</td>
<td>415.3, Rev 1.2<sup>19</sup></td>
<td></td>
</tr>
</tbody>
</table>

* * * * *

3 Standard Methods Online are available at http://www.standardmethods.org. The year in which each method was approved by the Standard Methods Committee is designated by the last two digits in the method number. The methods listed are the only online versions that may be used.

4 Available from ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428–2959 or http://astm.org. The methods listed are the only alternative versions that may be used.

10 AMI Turbiwell, “Continuous Measurement of Turbidity Using a Swan AMI Turbiwell Turbidimeter.” Available at https://www.nemi.org or from Markus Bernasconi, SWAN Analytische Instrumente AG, Stadtbachstrasse 13, 8340 Hinwil, Switzerland.

12 ChloroSense, “Measurement of Free and Total Chlorine in Drinking Water by Palintest ChloroSense.” August 2009. Available at https://www.nemi.org or from Palintest Ltd, 1455 Jamike Avenue (Suite 100), Erlanger, KY 41018.

Biosciences Complex, 116 Barrie Street, Kingston, Ontario, Canada, K7L 3N6.

Hach Company. “Hach Method 10241—Spectrophotometric Measurement of Free Chlorine (Cl₂) in Finished Drinking Water.” November 2015. Revision 1.2. 5600 Lindbergh Drive, P.O. Box 389, Loveland, CO 80539. (Available at http://www.hach.com.)

Hach Company. “Hach Method 8026—Spectrophotometric Measurement of Copper in Finished Drinking Water,” December 2015. Revision 1.2. 5600 Lindbergh Drive, P.O. Box 389, Loveland, CO 80539. (Available at http://www.hach.com.)

Hach Company. “Hach Method 10272—Spectrophotometric Measurement of Copper in Finished Drinking Water,” December 2015. Revision 1.2. 5600 Lindbergh Drive, P.O. Box 389, Loveland, CO 80539. (Available at http://www.hach.com.)

Hach Company. “Hach Method 10261—Total Organic Carbon in Finished Drinking Water by Catalyzed Ozone Hydroxy Radical Oxidation Infrared Analysis,” December 2015. Revision 1.2. 5600 Lindbergh Drive, P.O. Box 389, Loveland, CO 80539. (Available at http://www.hach.com.)

[FR Doc. 2016–15166 Filed 7–18–16; 8:45 am]

BILLING CODE 6560–50–P

DEPARTMENT OF HOMELAND SECURITY

Coast Guard

46 CFR Parts 1, 2, 15, 136, 137, 138, 139, 140, 141, 142, 143, 144, and 199
[Docket No. USCG–2006–24412]
RIN 1625–AB06
Inspection of Towing Vessels

AGENCY: Coast Guard, DHS.

ACTION: Final rule; information collection approval.

SUMMARY: The Coast Guard announces that the Office of Management and Budget (OMB) has approved the collection of information described in the Inspection of Towing Vessels final rule published on June 20, 2016. In that rule, which establishes safety regulations governing the inspection, standards, and safety management systems of towing vessels, we stated that before the Coast Guard could enforce the collection of information requirements in the rule, OMB would need to approve the Coast Guard’s request to collect this information. This document announces that approval. On June 23, 2016, OMB approved this Coast Guard request and assigned this collection of information OMB control number 1625–0117.

DATES: On June 23, 2016, OMB approved a new collection of information assigned OMB control number 1625–0117. That approval expires on June 30, 2019. Based on this OMB approval, the Coast Guard may start enforcing applicable collection of information requirements in the Inspection of Towing Vessels final rule published in the Federal Register on June 20, 2016 (81 FR 40004), starting on that rule’s effective date, July 20, 2016.

FOR FURTHER INFORMATION CONTACT: If you have questions about this rule, call or email Lieutenant Commander William Nabach, Project Manager, CG–462, U.S. Coast Guard, at 703–242–3326, or email Lieutenant Commander Michael Leck, Project Manager, CG–462, USCG M–238, National Security Sector, National Capital Region, U.S. Coast Guard, at LeckMitchell@uscg.mil.

SUPPLEMENTARY INFORMATION: On June 23, 2016, the Office of Management and Budget (OMB) approved a new collection of information for the Inspection of Towing Vessels final rule published on June 20, 2016 (81 FR 40004). In that rule, which establishes safety regulations governing the inspection, standards, and safety management systems of towing vessels, we stated that before the Coast Guard could enforce the collection of information requirements in the rule, OMB would need to approve the Coast Guard’s request to collect this information. This document announces the approval of that collection which has been assigned OMB control number 1625–0117. OMB’s approval of that collection will expire on June 30, 2019. On July 12, 2016, OMB approved the insertion of “CFR” in the title of the collection of information so it conforms with the title presented in the final rule: Towing Vessels—Title 46 CFR Subchapter M. We have included that notice of action in the docket as well as OMB’s June 23, 2016 notice of action.

The Inspection of Towing Vessels final rule becomes effective July 20, 2016, and the Coast Guard may start enforcing that rule’s applicable collection of information requirements on that date. As noted in the summary of that rule, certain existing towing vessels subject to this rule will have an additional 2 years before having to comply with most of its requirements, but we anticipate receiving applications from organizations seeking to become third-party organizations soon after the rule becomes effective. A copy of the two approval memos from OMB and the Inspection of Towing Vessels final rule are in docket USCG–2006–24412 which is available on the Internet by going to http://www.regulations.gov, inserting USCG–2006–24412 in the “Search” box, and clicking “Search.” This document, which announces approval of the collection of information assigned OMB control number 1625–0117, is issued under authority of 5 U.S.C. 552(a).

Dated: July 14, 2016.

J.G. Lantz,
Director of Commercial Regulations and Standards.

[FR Doc. 2016–17007 Filed 7–18–16; 8:45 am]

BILLING CODE 9110–04–P

DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration

50 CFR Part 622
[Docket No. 121004518–3398–01]
RIN 0648–XE701

Reef Fish Fishery of the Gulf of Mexico; 2016 Recreational Accountability Measures and Closure for Gulf of Mexico Gray Triggerfish

AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce.

ACTION: Temporary rule; closure.

SUMMARY: NMFS implements accountability measures (AMs) for the gray triggerfish recreational sector in the exclusive economic zone (EEZ) of the Gulf of Mexico (Gulf) for the 2016 fishing year through this temporary rule. NMFS has determined that the 2015 recreational annual catch limit (ACL) for Gulf gray triggerfish was exceeded; therefore, NMFS reduces the gray triggerfish recreational ACL and annual...